
1

®

Interfacing the X24C44, X24C45 NOVRAMs to the

Motorola 6803 Microcontroller

AN25.0Application Note

Author: Applications Staff

July 15, 2005
The following code demonstrates how the Intersil X24C44,
X24C45 serial NOVRAMs can be interfaced to the Motorola
6803 microcontroller when connected as shown in Figure 1.
The code uses three pins from port 1 to implement the

interface. Additional code can be found on the Intersil web
site at http://www.intersil.com that will implement interfaces
between several other Motorola microcontroller families and
most Intersil serial devices.

FIGURE 1. INTERFACING AN X24C44 TO A 6803 MICROCONTROLLER
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Intersil Americas Inc. 1992, 2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

Application Note 25

* THIS CODE WAS DESIGNED TO DEMONSTRATE HOW THE X24C44 COULD BE INTERFACED TO *
* THE 6803 MICROCONTROLLER. THE INTERFACE USES 3 LINES FROM PORT 1 (P17, *
* P16, AND P15) TO COMMUNICATE. THE DI AND DO PINS ON THE X24C44 ARE TIED *
* TOGETHER WHICH ALLOWS 1 LESS PORT LINE TO BE USED. *
* *
* THE CODE SHOWN DEMONSTRATES RCL, WREN, READ, WRITE, AND STORE *
* INSTRUCTIONS. THE REMAINING INSTRUCTIONS (WRDS AND ENAS) CAN BE ISSUED *
* USING THE SAME ROUTINE AS OTHER NON-DATA INSTRUCTIONS. *
* *
* THE PROGRAM ISSUES A SEQUENCE OF INSTRUCTIONS TO READ THE CONTENTS OF *
* ADDRESS 5 AND STORES THE SAME VALUE IN ADDRESS 9. THE SEQUENCE OF *
* INSTRUCTIONS IS AS FOLLOWS : *
* *
* 1. RCL SETS THE PREVIOUS RECALL LATCH *
* 2. WREN SETS THE WRITE ENABLE LATCH *
* 3. READ DATA FROM ADDRESS 5 IS READ *
* 4. WRITE THE DATA READ DURING STEP 3 IS WRITTEN TO ADDRESS 9 *
* 5. STO THE RAM'S CONTENTS IS TRANSFERED TO THE EEPROM *
* *
* DATA TRANSFER IS PERFORMED WITH THE MOST SIGNIFICANT BIT FIRST. DURING *
* THE READ AND WRITE INSTRUCTIONS THE DATA SEQUENCE IS INVERTED FROM THAT *
* SHOWN IN THE DATA BOOK (D15 IS SHIFTED FIRST). *

SKHI EQU $20 MASK TO GENERATE A 1 ON SK
SKLO EQU $DF MASK TO GENERATE A 0 ON SK
DIHI EQU $80 MASK TO GENERATE A 1 ON DI
DILO EQU $7F MASK TO GENERATE A 0 ON DI
CEHI EQU $40 MASK TO GENERATE A 1 ON CE
CELO EQU $BF MASK TO GENERATE A 0 ON CE
WRDS EQU $80 RESET WRITE ENABLE LATCH
STO EQU $81 TRANSFERS FROM RAM TO EEPROM
ENAS EQU $82 PLACES PART INTO POWER DOWN MODE
WRITE EQU $83 RAM WRITE
WREN EQU $84 SET WRITE ENABLE LATCH
RCL EQU $85 TRANSFERS FROM EEPROM TO RAM, RESETS
* WRITE ENABLE LATCH
READ EQU $86 RAM READ
DDR1 EQU $00 DATA DIRECTION REGISTER FOR PORT 1
PORT1 EQU $02 ADDRESS FOR PORT 1
ADDR EQU $80 LOCATION FOR X24C44 ADDRESS TO ACCESS
INST EQU $81 INSTRUCTION FOR PART
RWDAT EQU $82 LOCATION FOR X24C44 DATA TRANSFERED
P1DATA EQU $84 DATA TO BE SENT TO DUT
DD1DAT EQU $85 DATA TO BE STORED IN PORT 1 DIRECTION REGISTER

* RESET VECTOR TO BEGINNING OF PROGRAM CODE *

ORG $FFFE RESET VECTOR TO PROGRAM ENTRY POINT
FDB $E000

* START OF PROGRAM EXECUTION *

ORG $E000 BEGINNING OF EXECUTABLE CODE
2 AN25.0
July 15, 2005

Application Note 25
BEGIN: LDS #$00FF INITIALIZE STACK POINTER
LDAA #$FF PORT 1 ALL OUTPUTS
STAA DDR1 INITIALIZE PORT1 DIRECTION REGISTER
STAA DD1DAT INITIALIZE PORT1 DIRECTION VALUE
LDAA #$1F CE, SK, DI ALL 0S
STAA PORT1 INITIALIZE PORT1
STAA P1DATA INITIALIZE PORT1 DATA VALUE
LDAA #RCL PERFORM A RECALL TO SET
STAA INST THE RECALL LATCH
JSR CEHIGH
JSR OUTBYT
JSR CELOW
LDAA #WREN PERFORM A WRITE ENABLE TO SET
STAA INST THE WRITE ENABLE LATCH
JSR CEHIGH
JSR OUTBYT
JSR CELOW
LDAA #$05 READ THE CONTENTS OF ADDRESS 5
STAA ADDR THE VALUE READ WILL BE IN STORED
JSR RDWRD IN RWDATA
LDAA #$09 WRITE THE DATA JUST READ INTO
STAA ADDR ADDRESS 9
JSR WRWRD
LDAA #STO PERFORM A STORE OPERATION
STAA INST
JSR CEHIGH
JSR OUTBYT
JSR CELOW
BRA * LOOP UNTIL RESET

**
* WRITE THE WORD SPECIFIED IN RWDAT. THE ADDRESS TO *
* BE WRITTEN IS SPECIFIED IN ADDR. *
**

WRWRD: JSR CEHIGH WRITE VALUE IN RWDATA INTO LOCATION
LDAA ADDR SPECIFIED IN ADDR
LSLA JUSTIFY ADDRESS IN INSTRUCTION
LSLA
LSLA
ORAA #WRITE MASK IN WRITE INSTRUCTION
STAA INST
JSR OUTBYT SEND WRITE INSTRUCTION TO DUT
LDAA RWDAT
STAA INST
JSR OUTBYT SEND IN UPPER BYTE OF DATA
LDAA RWDAT+1
STAA INST
JSR OUTBYT SEND IN LOWER BYTE OF DATA
JSR CELOW
RTS

* READ THE WORD AT THE LOCATION SPECIFIED IN ADDR. THE *
* DATA READ WILL BE PLACED IN RWDAT. *

RDWRD: JSR CEHIGH READ THE ADDRESS SPECIFIED IN ADDR
LDAA ADDR
3 AN25.0
July 15, 2005

Application Note 25
LSLA JUSTIFY ADDRESS TO READ
LSLA
LSLA
ORAA #READ MASK IN READ INSTRUCTION
STAA INST
JSR SEND7 SEND IN 7 BITS OF READ INSTRUCTION
LDAA DD1DAT MAKE DATA LINE AN INPUT
ANDA #DILO
STAA DDR1
STAA DD1DAT
JSR CLOCK SEND EIGHTH CLOCK PULSE FOR READ INSTRUCTION
LDX #$0010 PREPARE TO SHIFT IN 16 BITS

BITX: CLC ASSUME BIT IS GOING TO BE A ZERO (CLEAR CARRY)
LDAA PORT1 READ BIT VALUE
ANDA #DIHI MASK BIT OUT OF BYTE READ
BEQ NO1 LEAVE CARRY FLAG ALONE IF BIT IS A 0
SEC SET CARRY IF BIT IS A 1

NO1: ROL RWDAT+1 ROLL CARRY FLAG INTO DATA WORD
ROL RWDAT
JSR CLOCK SEND A CLOCK PULSE
DEX LOOP UNTIL
BNE BITX 16 BITS ARE READ
LDAA DD1DAT MAKE DATA LINE AN OUTPUT
ORAA #DIHI
STAA DDR1
STAA DD1DAT
JSR CELOW
RTS

**
* SEND DATA OUT TO THE PART. THE DATA TO BE SENT IS *
* LOCATED IN INST. *
**

SEND7: LDX #$0007 SHIFT OUT 7 BITS FOR READ INSTRUCTION
BRA LOOPO

OUTBYT:LDX #$0008 PREPARE TO SHIFT OUT 8 BITS
LOOPO: LDAB P1DATA

ANDB #DILO
ROL INST
BCC IS0 JUMP IF DATA SHOULD BE 0
ORAB #DIHI MAKE DATA A 1

IS0: STAB PORT1 PUT DATA ON SDA
STAB P1DATA
JSR CLOCK SEND CLOCK SIGNAL
DEX
BNE LOOPO LOOP UNTIL ALL 8 BITS HAVE BEEN SENT
RTS

* BRING CE HIGH *

CEHIGH:LDAA P1DATA BRING CE HIGH

ORAA CEHI
STAA PORT1
STAA P1DATA
RTS
4 AN25.0
July 15, 2005

Application Note 25
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to
verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com

* BRING CE LOW *

CELOW: LDAA P1DATA BRING CE LOW

ANDA CELO
STAA PORT1
STAA P1DATA
RTS

* ISSUE A CLOCK PULSE. *

CLOCK: LDAA P1DATA PROVIDE A CLOCK PULSE ON SK

ORAA #SKHI
STAA PORT1 BRING SK HIGH
ANDA #SKLO
STAA PORT1 BRING SK LOW
STAA P1DATA
RTS
5 AN25.0
July 15, 2005

